ENERGY ESTIMATES FOR WEAKLY HYPERBOLIC SYSTEMS OF THE FIRST ORDER
نویسندگان
چکیده
منابع مشابه
Energy Estimates for Weakly Hyperbolic Systems of the First Order
For a class of weakly hyperbolic systems of the form Dt − A(t, x,Dx), where A(t, x, Dx) is a first-order pseudodifferential operator whose principal part degenerates like t∗ at time t = 0, for some integer l∗ ≥ 1, well-posedness of the Cauchy problem is proved in an adapted scale of Sobolev spaces. In addition, an upper bound for the loss of regularity that occurs when passing from the Cauchy d...
متن کاملDifference Methods for Nonlinear First-Order Hyperbolic Systems of Equations
Two difference methods for approximating some first-order nonlinear hyperbolic differential equations are considered. The methods apply to problems arising in a number of physical applications. Each of the methods is explicit and can be implemented on a computer easily. It is proved that the methods are first-order convergent in the maximum norm. For one of the methods in order to obtain conver...
متن کاملDecay Estimates for Hyperbolic Systems
In this work we study the Sobolev spaces generated by pseudo-differential operators associated with the group of symmetry of general first order hyperbolic systems. In these spaces we establish pointwise estimates of the solutions of a class of first order systems having convex eigenvalues. Various physical models belong to this class. For example, we consider crystal optics systems and anisotr...
متن کاملHyperbolic to Parabolic Relaxation Theory for Quasilinear First Order Systems
In this paper we study the limiting behavior of nonhomogeneous hyperbolic systems of balance laws when the relaxed equilibria are described by means of systems of parabolic type. In particular we obtain a complete theory for the 22 systems of genuinely nonlinear hyperbolic balance laws in 1-D with a strong dissipative term. A diierent method, which combines the div-curl lemma with accretive ope...
متن کاملA Finite Element Method for First-Order Hyperbolic Systems
A new finite element method is proposed for the numerical solution of a class of initial-boundary value problems for first-order hyperbolic systems in one space dimension. An application of our procedure to a system modeling gas flow in a pipe is discussed. Asymptotic error estimates are derived in the L norm in space.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Contemporary Mathematics
سال: 2005
ISSN: 0219-1997,1793-6683
DOI: 10.1142/s0219199705001969